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Abstract The emergent machine learning technique—

extreme learning machines (ELMs)—has become a hot area

of research over the past years, which is attributed to the

growing research activities and significant contributions

made by numerous researchers around the world. Recently, it

has come to our attention that a number of misplaced notions

and misunderstandings are being dissipated on the relation-

ships between ELM and some earlier works. This paper

wishes to clarify that (1) ELM theories manage to address the

open problem which has puzzled the neural networks, ma-

chine learning and neuroscience communities for 60 years:

whether hidden nodes/neurons need to be tuned in learning,

and proved that in contrast to the common knowledge and

conventional neural network learning tenets, hidden nodes/

neurons do not need to be iteratively tuned in wide types of

neural networks and learning models (Fourier series, biolo-

gical learning, etc.). Unlike ELM theories, none of those

earlier works provides theoretical foundations on feedfor-

ward neural networks with random hidden nodes; (2) ELM is

proposed for both generalized single-hidden-layer feedfor-

ward network and multi-hidden-layer feedforward networks

(including biological neural networks); (3) homogeneous

architecture-based ELM is proposed for feature learning,

clustering, regression and (binary/multi-class) classification.

(4) Compared to ELM, SVM and LS-SVM tend to provide

suboptimal solutions, and SVM and LS-SVM do not con-

sider feature representations in hidden layers of multi-hid-

den-layer feedforward networks either.

Keywords Extreme learning machine � Random vector

functional link � QuickNet � Radial basis function network �
Feedforward neural network � Randomness

Introduction

Despite that the relationships and differences between ex-

treme learning machines (ELMs) and those earlier works

(e.g., Schmidt et al. [1] and RVFL [2]) have been clarified

in [3–8], recently several researchers insist that those ear-

lier works are the ‘‘origins’’ of ELM and ELM essentially

the same as those earlier works, and thus, further claimed

that it is not necessary to have a new term extreme learning

machines (ELMs). This paper wishes to clarify the essen-

tial elements of ELMs which may have been overlooked in

the past years.

We prefer to avoid the word ‘‘origin’’ in this paper as (1)

it may be really difficult to show which is the ‘‘true’’

‘‘origin’’ in a research area as most works are related to

each other and (2) it may cause unnecessary inconvenience

or potential ‘‘controversy’’ among those listed as ‘‘origins’’

and other pioneering works which may have been missing

in discussions. The ultimate goal of research is to find the

truth of natural phenomena and to move research forward

instead of arguing for being listed as ‘‘origins.’’ Otherwise,

many earlier works should not have had their own terms,

and instead, almost all should simply have been called

‘‘feedforward neural networks’’ or should even simply go

back to Frank Rosenblatt’s ‘‘perceptrons’’ [9]. Such

misunderstandings on ignoring the needs of having new

terms would actually discourage researchers’ creativeness

and their spirit of telling the truth and differences in re-

search. Similarly, there is nothing wrong to have new terms

for the variants of ELM (with Fourier series nodes) with
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significant extensions (such as random kitchen sink (RKS)

[10], RKS’ further extension—FastFood [11] and Convex

Network [12]) as well as ELM with LMS referred to as No-

Prop algorithm [13].

Generally speaking, as analyzed in Huang et al. [6]:

‘‘ ‘Extreme’ here means to move beyond conventional ar-

tificial learning techniques and to move toward brain alike

learning. ELM aims to break the barriers between the

conventional artificial learning techniques and biological

learning mechanism. ‘Extreme learning machine (ELM)’

represents a suite of machine learning techniques in which

hidden neurons need not be tuned with the consideration of

neural network generalization theory, control theory, ma-

trix theory and linear system theory.’’

In order to have clearer understanding of ELM, it is

better to analyze ELM in the aspects of its philosophy,

theories, network architecture, network neuron types and

its learning objectives and algorithms.

ELM’s Beliefs, Philosophy and Objectives

ELM works start from our intuitive belief on biological

learning and neural networks generalization performance

theories [14]. Further development of ELM works is also

built on top of Frank Rosenblatt’s multilayer ‘perceptrons’’

[9], SVM [15], LS-SVM [16], Fourier series, linear sys-

tems, numeral methods, matrix theories, etc., but with

essential extensions.

Frank Rosenblatt [9] believes that multilayer feedfor-

ward networks (perceptrons) can enable computers to

‘‘walk, talk, see, write, reproduce itself and be conscious of

its existence.’’1. Minsky and Papert [17] do not believe that

perceptrons have such learning capabilities by giving a

counter example showing that a perceptron without having

hidden layers even could not handle the simple XOR

problem. Such a counter example made many researchers

run away from artificial neural networks and finally re-

sulted in the ‘‘Artificial Intelligence (AI) winter’’ in 1970s.

To our understanding, there is an interesting issue between

Rosenblatt’s dream and Minsky’s counter example.

Rosenblatt may not be able to give efficient learning al-

gorithms in the very beginning of neural networks research.

Rosenblatt’s perceptron is a multilayer feedforward net-

work. In many cases, a feedforward network with input and

output layers but without hidden layers is considered as a

two-layer perceptron, which were actually used in Minsky

and Papert [17]. However, a feedforward network with

input and output layers but without hidden layers seems

like a ‘‘brain’’ which has input layers (eyes, noses, etc.) and

output layers (motor sensors, etc.) but without ‘‘central

neurons.’’ Obviously, such a ‘‘brain’’ is an empty shell and

has no ‘‘learning and cognition’’ capabilities at all. How-

ever, Rosenblatt and Minsky’s controversy also tells the

truth that one small step of development in artificial in-

telligence and machine learning may request one or several

generations’ great efforts. Their professional controversy2

may turn out to indirectly inspire the reviving of artificial

neural network research in the end.

Thus, there is no doubt that neural networks research

revives after hidden layers are emphasized in learning since

1980s. However, an immediate dilemma in neural network

research is that since hidden layers are important and

necessary conditions of learning, by default expectation

and understanding of neural network research community,

hidden neurons of all networks need to be tuned. Thus,

since 1980s tens of thousands of researchers from almost

every corner of the world have been working hard on

looking for learning algorithms to train various types of

neural networks mainly by tuning hidden layers. Such a

kind of ‘‘confusing’’ research situation turned out to force

us to seriously ask several questions as early as 1995 [18]:

1. Do we really need to spend so much manpower and

great effort on finding learning algorithms and

manually tuning parameters for different neural net-

works and applications? However, obviously, in con-

trast there is no ‘‘pygmy’’ sitting in biological brains

and tuning parameters there.

2. Do we really need to have different learning algo-

rithms for different types of neural networks in order to

achieve good learning capabilities of feature learning,

clustering, regression and classification?

3. Why are biological brains more ‘‘efficient’’ and

‘‘intelligent’’ than those machines/computers embed-

ded with artificially designed learning algorithms?

4. Are we able to address John von Neumann’s puzzle3

[19, 20] why ‘‘an imperfect neural network, containing

many random connections, can be made to perform

reliably those functions which might be represented by

idealized wiring diagrams?’’

No solutions to the above-mentioned problems were found

until 2003 after many years of efforts spent. Finally, we

found that the key ‘‘knot’’ in the above-mentioned open

problems is that

1. The counter example given by Minsky and Papert [17]

shows that hidden layers are necessary.

1 http://en.wikipedia.org/wiki/Perceptron.

2 Professional controversies should be advocated in academic and

research environments; however, irresponsible anonymous attack

which intends to destroy harmony research environment and does not

help maintain healthy controversies should be refused.
3 John von Neumann was also acknowledged as a ‘‘Father of

Computers.’’
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2. Earlier neural networks theories on universal ap-

proximation capabilities (e.g., [21, 22]) are also built

on the assumption that hidden neurons need to be

tuned during learning.

3. Thus, naturally and reasonably speaking, hidden

neurons need to be tuned in artificial neural networks.

In order to address the above-mentioned open problems,

one has to untie the key ‘‘knot,’’ that is, for wide types of

networks (artificial neural networks or biological neural

networks whose network architectures and neuron model-

ing are even unknown to human being), hidden neurons are

important but do not need to be tuned.

Our such beliefs and philosophy in both machine learning

and biological learning finally result in the new techniques

referred to extreme learning machines (ELMs) and related

ELM theories. As emphasized in Huang et al. [6], ‘Extreme’

means to move beyond conventional artificial learning tech-

niques and to move toward brain alike learning. ELM aims to

break the barriers between the conventional artificial learning

techniques and biological learning mechanism. ‘Extreme

learning machine (ELM)’ represents a suite of machine

learning techniques (including single-hidden-layer feedfor-

ward networks andmulti-hidden-layer feedforward networks)

in which hidden neurons do not need to be tuned with the

consideration of neural network generalization theory, control

theory, matrix theory and linear system theory. To randomly

generate hidden nodes is one of the typical implementations

which ensures that ‘‘hidden neurons do not need to be tuned’’

in ELM; however, there also exist many other implementa-

tions such as kernels [6, 23], SVD and local receptive fields

[8]. We believe that ELM reflects the truth of some biological

learning mechanisms. Its machine-based learning efficiency

was confirmed in 2004 [24], and its universal approximation

capability (for ‘‘generalized SLFNs’’ in which a hidden node

may be a subnetwork of several nodes and/or with almost any

nonlinear piecewise continuous neurons (although their exact

mathematical modeling/formula/shapes may be unknown to

human beings)) was rigorously proved in theory in 2006–2008

[5, 25, 26]. Its concrete biological evidence subsequently

appears in 2011–2013 [27–30].

ELM targets at not only ‘‘generalized’’ single-hidden-

layer feedforward networks but also ‘‘generalized’’ multi-

hidden-layer feedforward networks in which a node may be a

subnetwork consisting of other hidden nodes [5, 8, 26].

Single hidden layer of ELM also covers wide types of neural

networks including but not limited to sigmoid networks and

RBF networks (refer to ‘‘‘Generalized’ Single-Hidden-

Layer Feedforward Networks (SLFNs)’’ section for details).

Compression, feature learning, clustering, regression

and classification are fundamental to machine learning and

machine intelligence. ELM aims to implement these five

fundamental operations/roles of learning in homogeneous

ELM architectures (cf. Fig. 1).

ELM Theories

Although there are few attempts on random sigmoid hidden

neurons and/or RBF neurons in 1950s–1990s [1, 2, 9, 31–

33], this kind of implementations did not really ‘‘take off’’

except for RVFL [34] due to several reasons:

1. The common understanding and tenet is that hidden

neurons of various types of neural networks need to be

tuned.

2. There lacks of theoretical analysis except for RVFL.

3. There lacks of strong motivation from biological

learning except for Rosenblatt’s perceptron.

ELM theories managed to address the challenging issue:

‘‘Whether wide types of neural networks (including biolo-

gical neural networks) with wide types of hidden nodes/

neurons (almost any nonlinear piecewise continuous

nodes) can be randomly generated.’’ Although ELM aims

to deal with both single-hidden-layer feedforward networks

(SLFNs) and multi-hidden-layer feedforward networks, its

theories have mainly focused on SLFN cases in the past

10 years.

Universal Approximation Capability

Strictly speaking, none of those earlier works (e.g., Baum

[31] and Schmidt et al. [1], RVFL [2, 32]) has addressed in

theory whether random hidden nodes can be used in their

specific sigmoid or RBF networks, let alone the wide type

of networks covered by ELM theories. Lowe’s [35] RBF

network does not use the random impact factor although

Compression

Feature
Learning

Clustering

Regression

Classification

Fig. 1 Fundamental operations/roles of ELM. Courtesy to the

anonymous designer who provides the robot icon in Internet
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the centers of their RBF nodes are randomly generated.

One has to adjust impact factors based on applications. In

other words, semi-random RBF nodes are used in RBF

network [35]. Detail analysis has been given in Huang [3].

Both Baum [31] and Schmidt et al. [1] focus on em-

pirical simulations on specific network architectures (a

specific case of ELM models).4 To the best of our

knowledge, both earlier works do not have theoretical

analysis, let alone the rigorous theoretical proof. Although

intuitively speaking, Igelnik and Pao [32] try to prove the

universal approximation capability of RVFL, as analyzed

in [4, 8], actually Igelnik and Pao [32] only prove RVFL’s

universal approximation capability when semi-random

sigmoid and RBF hidden nodes are used, that is, the input

weights ai are randomly generated, while the hidden node

biases bi are calculated based on the training samples xi

and the input weights ai (refer to Huang et al. [4] for detail

analysis).

In contrast, ELM theories have shown that almost any

nonlinear piecewise continuous random hidden nodes (in-

cluding sigmoid and RBF nodes mentioned in those earlier

works, but also including wavelet, Fourier series and bio-

logical neurons) can be used in ELM, and the resultant

networks have universal approximation capabilities [5, 25,

26]. Unlike the semi-random sigmoid and RBF hidden

nodes used in the proof of RVFL [32] in which some pa-

rameters are not randomly generated, the physical meaning

of random hidden nodes in ELM theories is that all the

parameters of the hidden nodes are randomly generated

independently from the training samples, e.g., both random

input weights ai and biases bi for additive hidden nodes, or

both centers ai and impact factor bi for RBF networks,

parameters for Fourier series and wavelets, etc. It is ELM

theories first time to show that all the hidden nodes/neurons

can be not only independent from training samples but also

independent from each other in wide types of neural net-

works and mathematical series/expansions as well as in

biological learning mechanism [5, 6, 25, 26].

Definition 3.1 [5, 25, 26] A hidden layer output mapping

hðxÞ ¼ ½h1ðxÞ; . . .; hLðxÞ� is said to be an ELM random

feature mapping if all its hidden node parameters are ran-

domly generated according to any continuous sampling

distribution probability, where hiðxÞ ¼ Giðai; bi; xÞ, i ¼
1; . . .; L (the number of neurons in the hidden layer)..

Different hidden nodes may have different output

functions Gi. In most applications, for the sake of sim-

plicity, same output functions can be chosen for all hidden

nodes, that is, Gi ¼ Gj for all i; j ¼ 1; . . .; L.

Theorem 3.1 (Universal approximation capability [5, 25,

26]) Given any non-constant piecewise continuous function

as the activation function, if tuning the parameters of

hidden neurons could make SLFNs approximate any target

continuous function f ðxÞ, then the sequence fhiðxÞgLi¼1 can

be randomly generated according to any continuous dis-

tribution probability, and limL!1 k
PL

i¼1 bihiðxÞ �
f ðxÞk ¼ 0 holds with probability one with appropriate

output weights b.

Classification Capability

In addition, ELM theories also prove the classification

capability of wide types of networks with random hidden

neurons, and such theories have not been studied by those

earlier works.

Theorem 3.2 (Classification capability [23]) Given any

non-constant piecewise continuous function as the activa-

tion function, if tuning the parameters of hidden neurons

could make SLFNs approximate any target continuous

function f ðxÞ, then SLFNs with random hidden layer

mapping hðxÞ can separate arbitrary disjoint regions of

any shapes.

Single-Hidden-Layer Feedforward Networks
Versus Multi-Hidden-Layer Feedforward
Networks

It is difficult to deal with multi-hidden layers of ELM di-

rectly without having complete solutions of single hidden

layer of ELM. Thus, in the past 10 years, most of ELM

works have been focusing on ‘‘generalized’’ single-hidden-

layer feedforward networks (SLFNs).

‘‘Generalized’’ Single-Hidden-Layer Feedforward

Networks (SLFNs)

The study by Schmidt et al. [1] focuses on sigmoid net-

works, and the study by Pao et al. [32] focuses on RVFL

(with sigmoid or RBF nodes). Both have strict standard

single hidden layers, which are not ‘‘generalized’’ single-

hidden-layer feedforward networks (SLFNs) studied in

ELM. Similar to SVM [15], the feedforward neural net-

work with random weights proposed in Schmidt et al. [1]

requires a bias in the output node in order to absorb the

4 Schmidt et al. [1] only reported some experimental results on three

synthetic toy data as usually done by many researchers in 1980s–

1990s; however, it may be difficult for machine learning community

to make concrete conclusions based on experimental results on toy

data in most cases.
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system error as its universal approximation capability with

random sigmoid nodes was not proved when proposed:

fLðxÞ ¼
XL

i¼1

bigsigðai � x þ biÞ þ b ð1Þ

where gsigðxÞ ¼ 1
1þexpð�xÞ. Both QuickNet and RVFL have

the direct link between the input node and the output node:

fLðxÞ ¼
XL

i¼1

bigsig or RBFðai; bi; xÞ þ a � x ð2Þ

ELM is proposed for ‘‘generalized’’ single-hidden-layer

feedforward networks and mathematical series/expansions

(which may not be a conventional neural network even,

such as wavelet and Fourier series):

fLðxÞ ¼
XL

i¼1

biGðai; bi; xÞ ð3Þ

The basic ELM is for generalized SLFN, unlike the fully

connected networks in those earlier works, there are three

levels of randomness in ELM (Fig. 3 for details):

1. Fully connected, hidden node parameters are randomly

generated.

2. Connection can be randomly generated, not all input

nodes are connected to a particular hidden node.

Possibly only some input nodes in some local field are

connected to one hidden node.

3. A hidden node itself can be a subnetwork formed by

several nodes which naturally forms the local receptive

fields and pooling functions, and thus results in

learning local features. In this sense, some local parts

of a single ELM can contain multi-hidden layers.

Note Unlike Schmidt et al. [1] and Pao et al. [32] in which

each node is a sigmoid or RBF node only, each hidden

node in ELM can be a subnetwork of other nodes in which

feature learning can be implemented efficiently (refer to

Huang et al. [8], Figs. 2 and 3 for details).

According to ELM theories[5, 25, 26], ELM SLFNs

include but are not limited to:

1. Sigmoid networks

2. RBF networks

3. Threshold networks [36]

4. Trigonometric networks

5. Fuzzy inference systems

6. Fully complex neural networks [37]

7. High-order networks

8. Ridge polynomial networks

9. Wavelet networks

10. Fourier series [5, 6, 25, 26]

11. Biological neurons whose modeling/shapes may be

unknown, etc.

Multi-Hidden-Layer Feedforward Networks

However, unlike Schmidt et al. [1] and RVFL [32]

which only works for single-hidden-layer feedforward

networks, the ultimate tenet of ELM is: Hidden nodes of

wide types of multi-hidden-layer networks do not need to

be tuned (e.g., [8, 38, 39, 43]) (cf. Fig. 4). Although mul-

tilayers of ELM concepts have been given in ELM theories

in 2007 [26], it has not been used until recently (e.g., [8, 38,

39, 43]). In essence:

1. Rosenblatt tried to transfer learned behavior from

trained rats to naive rats by the injection of brain

extracts,5 which may not consider the fact that different

layers of neurons may play different roles. Unlike

Rosenblatt’s perceptron concept, we think that it is

impossible to have all the layers randomly generated. If

all layers in a multilayer network are randomly gener-

ated, the useful information may not pass through two or

more purely random hidden layers. However, each basic

ELM can be used in each hidden layer, and hidden

neurons do not need to be tuned layer wise, and different

layer may have different targets (in terms of ELM’s five

fundamental operations: compression, feature learning,

clustering, regression and classification).

2. The meanings that hidden nodes do not need to be

tuned are twofold:

(a) Hidden nodes may be randomly generated.

(b) Although hidden nodes do not need to be

randomly generated, they need not be tuned

either. For example, a hidden node in the next

layer can simply be a linear sum or nonlinear

transform of some randomly generated nodes in

the earlier layer. In this case, some nodes are

randomly generated and some are not, but none

of them are tuned.[8]

3. Each single ELM can deal with compression, feature

learning, clustering, regression or classification. Thus,

a homogeneous hierarchical blocks of ELM can be

built. For example, one ELM as feature learning, the

next ELM works as a classifier. In this case, we have

two hidden layers of ELM, overall speaking it is not

randomly generated and it is ordered, but hidden nodes

in each layer do not need to be tuned (e.g., randomly

generated or explicitly given/calculated (Fig. 4a).

4. ELM slices which play feature learning or clustering roles

can also be used to link different learning models. Or as an

entire networks, some layers are trained by ELM, and some

are trained by other models (cf. Fig. 6).

5 http://en.wikipedia.org/wiki/Frank-Rosenblatt.
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Relationship and Differences Among ELM, Deep

Learning and SVM/LS-SVM

ELM is different from deep Learning in the sense that

hidden neurons of the entire ELM do not need to be tuned.

Due to ELM’s different roles of feature learning and

clustering, ELM can be used as the earlier layers in

multilayer networks in which the late layers are trained by

other methods such as deep learning (cf. Figure 5).

SVM was originally proposed to handle multilayer

feedforward networks by Cortes and Vapnik [15] which

assumes that when there is no algorithm to train a multi-

layer network, one can consider the output function of the

last hidden layer as /ðxÞ.

E1 E i EL

Problem based 
optimization constraints

1 i L
(ai ,bi )   

1 d

x j

Feature learning 
Clustering 
Regression 
Classification

L Random Hidden Neurons (which need not be
algebraic sum based) or other  ELM feature 
mappings. Different type  of output functions 
could be used in different neurons:

( ) ( , , )i i i ih x G ba x
d Input Nodes

(a)

E1 E i EL

Problem based 
optimization constraints

1 L
i

1 d

x j

Feature learning 
Clustering 
Regression 
Classification

Hidden nodes need not be tuned. A hidden node 
can be a subnetwork of several nodes.

(b)

=

Fig. 2 ELM theories [5, 25, 26]

show that wide types of hidden

nodes can be used in each ELM

slice (ELM feature mapping) in

which a hidden node can be a

subnetwork of several nodes.

a ELM slice/feature mapping

with fully connected random

hidden nodes. b ELM slice/

feature mapping with

subnetworks

Hidden Node i

Hidden Node i

Combinatorial Node i

(a)

(b)

(c)

Fig. 3 ELM theories [5, 25, 26]

show that wide types of hidden

nodes can be used and resultant

networks need not be a single-

hidden-layer feedforward

networks. ‘‘Generalized SLFN’’

referred by ELM means a

subnetwork of several nodes.

a Hidden node in full

connection in ELM. b Hidden

node in local connection/

random connection in ELM.

c Combinatorial node of several

nodes in ELM
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1. Unlike ELM and deep learning which study feature

representations in each layer, SVM and LS-SVM do

not consider the feature representation and functioning

roles of each inner hidden layer (cf. Figure 7).

2. SVM and LS-SVM can also be considered as single-

hidden-layer networks with the hidden layer output

function /ðxÞ. In this case, both ELM and SVM/LS-

SVM have single hidden layers. However, ELM has

explicit hidden layer mapping hðxÞ (convenient for

feature representations) and SVM/LS-SVM has un-

known hidden layer mapping /ðxÞ (inconvenient for

feature representations).

3. ELM works for feature learning, clustering regression

and classification with ridge regression optimization

condition, while SVM/LS-SVM mainly works for

binary classification with maximal margin

optimization condition. It is difficult for SVM/LS-

SVM to have feature representation due to unknown

mapping /ðxÞ (refer to Table 1 for detail comparisons

between ELM and SVM/LS-SVM, and Huang et al. [6,

23] for detail analysis on the reasons why SVM and

LS-SVM provide suboptimal solutions in general).

Hidden Neuron Types

Unlike Schmidt et al. [1] and Pao et al. [32] in which each

node is a sigmoid or RBF function, ELM is valid for wide

types of neural nodes and non-neural nodes. ELM is effi-

cient for kernel learning as well [6, 23].

Real Domain

As ELM has universal approximation capability for a wide

type of nonlinear piecewise continuous functions Gða; b; xÞ,
it does not need any bias in the output layer. Some commonly

used activation functions covered in ELM theories are:

1. Sigmoid function:

Gða; b; xÞ ¼ 1

1 þ expð�ða � x þ bÞÞ ð4Þ

2. Fourier function[25, 46]:

Gða; b; xÞ ¼ sinða � x þ bÞ ð5Þ

d Input Nodes ELM Feature Mapping ELM Feature Mapping m Output Nodes

ELM Feature Mapping ELM Feature Mapping / Representation ELM Learning

(a)

d Input Nodes m Output Nodes

(b)

Fig. 4 Comparisons between

hierarchical ELM and deep

learning: Each ELM slice forms

one hidden layer and hidden

node in some hidden layers

could be a subnetwork of

several neurons. Unlike deep

learning concept, ELM (at its

both single hidden layer or

multi-hidden layers of

architectures) emphasizes in

learning without tuning hidden

neurons. a ELM: Entire network

as a big single ELM but with

ELM working for each layer.

Each layer has feature

presentation and is trained

without hidden neurons tuned.

(e.g., [8, 38, 39]). b Deep

learning: Feature

representations are given in

hidden layers. Hidden neurons

are iteratively tuned in inner

models, and iterative tuning is

imposed on the entire networks

d Input Nodes ELM Feature m Output Nodes

Fig. 5 ELM slice works as the input of other learning models
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3. Hardlimit function [25, 36]:

Gða; b; xÞ ¼ 1; ifa � x � b� 0

0; otherwise

�

ð6Þ

4. Gaussian function [23, 25]:

Gða; b; xÞ ¼ expð�bkx � ak2Þ ð7Þ

5. Multi-quadrics function [23, 25]:

Gða; b; xÞ ¼ ðkx � ak2 þ b2Þ1=2 ð8Þ

6. Wavelet [47, 48]:

Gða; b; xÞ ¼ kak�1=2W
x � a

b

� �
ð9Þ

where W is a single mother wavelet function.

Remark Due to the validity of universal approximation and

classification capability on general nonlinear piecewise

continuous activation functions, combinations of different

type of hidden neurons can be used in ELM [49].

Complex Domain

According to Li et al. [4, 37], random hidden nodes used in

ELM can be fully complex hidden nodes proposed by Kim

and Adali [50], and the resultant ELM in complex domain

has the universal approximation capability too. The com-

plex hidden nodes of ELM include but are not limited to:

1. Circular functions:

tanðzÞ ¼ eiz � e�iz

iðeiz þ e�izÞ ð10Þ

sinðzÞ ¼ eiz � e�iz

2i
ð11Þ

2. Inverse circular functions:

arctanðzÞ ¼
Z z

0

dt

1 þ t2
ð12Þ

arccosðzÞ ¼
Z z

0

dt

ð1 � t2Þ1=2
ð13Þ

3. Hyperbolic functions:

tanhðzÞ ¼ ez � e�z

ez þ e�z
ð14Þ

sinhðzÞ ¼ ez � e�z

2
ð15Þ

4. Inverse hyperbolic functions:

arctanhðzÞ ¼
Z z

0

dt

1 � t2
ð16Þ

arcsinhðzÞ ¼
Z z

0

dt

ð1 þ t2Þ1=2
ð17Þ

d Input Nodes ELM Feature ELM Feature m Output Nodes

ELM Feature Mapping ELM Learning

(a)

d Input Nodes

(b)

ELM Feature

Fig. 6 ELM slices work with

different learning models:

However, each ELM slice as a

fundamental learning element can

be incorporated into other

learning models (e.g., [40–44]).

a Other learning models work

between different ELM slices.

b ELM slices work between

different learning models

270 Cogn Comput (2015) 7:263–278

123

Author's personal copy



Regularization Network and Generalization
Performance

Similar to most conventional learning algorithms proposed

in 1980s–1990s, Schmidt et al. [1] and Pao et al. [32] focus

on minimizing training errors only. They are not regular-

ization networks.6

However, inspired by neural networks generalization

performance theories proposed in 1998 [14], which are

published after Schmidt et al. [1] and Pao et al. [32], ELM

theory aims to reach the smallest training error but also the

smallest norm of output weights [24, 53] (in this sense,

generally speaking, ELM is a kind of regularization neural

networks but with non-tuned hidden layer mappings

(formed by either random hidden nodes, kernels or other

implementations)):

Minimize: kbkr1

p þ CkHb� Tkr2

q ð18Þ

where r1 [ 0; r2 [ 0; p; q ¼ 0; 1
2
; 1; 2; . . .;þ1. Different

combinations of kbkr1

p and kHb� Tkr2

q can be used and

result in different learning algorithms for feature learning

and clustering [7]. H is the ELM hidden layer output

matrix (randomized matrix):

H ¼
hðx1Þ
..
.

hðxNÞ

2

6
4

3

7
5 ¼

Gða1; b1; x1Þ � � � GðaL; bL; x1Þ
..
. ..

. ..
.

Gða1; b1; xNÞ � � � GðaL; bL; xNÞ

2

6
4

3

7
5

ð19Þ

and T is the training data target matrix:

T ¼
tT1
..
.

tTN

2

6
4

3

7
5 ¼

t11 � � � t1m

..

. ..
. ..

.

tN1 � � � tNm

2

6
4

3

7
5 ð20Þ

One can linearly apply many ELM solutions (but not all) to

the specific sigmoid network with b (Schmidt et al. [1]) and

a network with direct link from the input layer to the output

network (including but not limited to QuickNet [54] and

RVFL [2]); suboptimal solutions will be reached compared

to the original ELM. The resultant learning algorithms can

be referred to ELM?b and ELM?ax, respectively (refer to

Huang et al. [6, 23] for details).

For RVFL, the hidden layer output matrix is:

HRVFL

¼

gsig;RBFða1;b1;x1Þ � � � gsig;RBFðaL;bL;x1Þ x1

..

. ..
. ..

. ..
.

gsig;RBFða1;b1;xNÞ � � � gsig;RBFðaL;bL;xNÞ xN

2

6
6
4

3

7
7
5

¼ HELMforsigmoidor RBFbasis XN�d½ �
ð21Þ

where HELM for sigmoid or RBF basis are two specific ELM hidden

layer output matrices (19) with sigmoid or RBF basis, and

XN�d is a N � d matrix with i-th input xi as the i-th row.

If the output neuron bias is considered as a bias neuron in

the hidden layer as done in most conventional neural networks,

the hidden layer output matrix for Schmidt et al. [1] will be

HSchmidt;etal:ð1992Þ

¼

gsigða1 � x1 þ b1Þ � � � gsigðaL � x1 þ bLÞ 1 � � � 1

..

. ..
. ..

. ..
.

gsigða1 � xN þ b1Þ � � � gsigðaL � xN þ bLÞ 1 � � � 1

2

6
6
4

3

7
7
5

¼ HELMforsigmoidbasis 1N�m½ �
ð22Þ

where HELM for sigmoid basis is a specific ELM hidden layer

output matrix (19) with sigmoid basis, and 1N�m is a N � m

Fig. 7 Relationships and

differences between ELM,

SVM/LS-SVM and deep

learning: Unlike ELM and deep

leaning, (1) SVM/LS-SVM as

multilayers of networks does

not emphasize feature

representations in hidden layers;

and (2) SVM/LS-SVM only

handles binary cases directly in

their original formula

6 Chen et al. [51, 52] provide some interesting learning algorithms

for RVFL networks and suggested that regularization could be used to

avoid overfitting. Their works are different from structural risk

minimization and maximum margin concept adopted in SVM. ELM’s

regularization objective moves beyond maximum margin concept,

and ELM is able to unify neural network generalization theory,

structural risk minimization, control theory, matrix theory and linear

system theory in ELM learning models (refer to Huang [6, 23] for

detail analysis).
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matrix with constant element 1. Although bias b in Sch-

midt et al. [1] seems like a simple parameter, however, it is

known that from both mathematical and machine learning

point of view, a parameter may result in some significant

differences. Its role has drawn researchers’ attention [6, 55,

56]. In fact, one of the main reasons why it is difficult to

apply SVM and LS-SVM in multi-class applications in the

past two decades is mainly due to the output node bias b.

Without the output node bias b , SVM and LS-SVM so-

lutions would become much easier [6, 23].

Closed-Form Solutions Versus Non-closed-Form
Solutions

In many cases, closed-form solutions of ELM can be given

when (18) r1 ¼ r2 ¼ p ¼ q ¼ 2. However, non-closed-

form solutions can also be given if r1 ¼ r2 ¼ p ¼ q ¼ 2

[5, 13, 25, 26, 57] or if other values are given to r1,r2, p,

and q , especially when ELM is used in the applications of

compression, feature learning and clustering [5, 7, 25, 26,

58–60]. Actually the original proof on the universal ap-

proximation capability of ELM is based on non-closed-

form solutions of ELM [5, 25, 26].

Conclusions

It has been around 60 years since Frank Rosenblatt [9]

dreamed that his perceptron could enable computers to

‘‘walk, talk, see, write, reproduce itself and be conscious to

its existence.’’ It was difficult for many researchers to

believe his great dream due to lack of efficient learning

algorithms and strong theoretical support in the very be-

ginning of artificial neural network era. On the other hand,

John von Neumann was puzzled [19, 20] why ‘‘an im-

perfect neural network, containing many random connec-

tions, can be made to perform reliably those functions

which might be represented by idealized wiring dia-

grams’’[9]. This paper shows that ELM theories and

framework may fill such a gap between Frank Rosenblatt’s

dream and John von Neumann’s puzzle:

1. ELM can be used to train wide type of multi-hidden

layer of feedforward networks: Each hidden layer can

be trained by one single ELM based on its role as

feature learning, clustering, regression or classifica-

tion. Entire network as a whole can be considered as a

single ELM in which hidden neurons need not be

tuned (refer to Fig. 8 for the detail summary of ELM).

2. ELM slice can be ‘‘inserted’’ into many local parts of a

multi-hidden-layer feedforward network, or work

together with other learning architectures/models.
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3. A hidden node in an ELM slice (a ‘‘generalized’’

SLFN) can be a network of several nodes; thus, local

receptive fields can be formed.

4. In each hidden layer, input layers to hidden nodes can

be fully or partially randomly connected according to

different continuous probability distribution function.

The performance of the network is stable even if a

finite number of hidden neurons and their related

connections change.

Thus, overall speaking, from ELM theories point of view,

the entire multilayers of networks are structured and

ordered, but they may be seemingly ‘‘messy’’ and ‘‘un-

structured’’ in a particular layer or neuron slice. ‘‘Hard

wiring’’ can be randomly built locally with full connection

or partial connections. Coexistence of globally structured

architectures and locally random hidden neurons happen to

have fundamental learning capabilities of compression,

feature learning, clustering, regression and classification.

This may have addressed John von Neumann’s puzzle.

Biological learning mechanisms are sophisticated, and we

believe that ‘‘learning without tuning hidden neurons’’ is

one of the fundamental biological learning mechanisms in

many modules of learning systems. Furthermore, random

hidden neurons and ‘‘random wiring’’ are only two specific

implementations of such ‘‘learning without tuning hidden

neurons’’ learning mechanisms.
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on the potential links between ELM and biological learning in local

receptive fields.

Appendix: Further Clarification
of Misunderstandings on the Relationship Between
ELM and Some Earlier Works

Recently, it has drawn our attention that several researchers

have been making some very negative and unhelpful com-

ments on ELM in neither academic nor professional manner

due to various reasons and intentions, which mainly state that

ELM does not refer to some earlier works (e.g., Schmidt et al.

[1] and RVFL), and ELM is the same as those earlier works.

It should be pointed out that these earlier works have actually

been referred in our different publications on ELM as early as

in 2007. It is worth mentioning that ELM actually provides a

unifying learning platform for wide types of neural networks

and machine learning techniques by absorbing the common

advantages of many seemingly isolated different research

efforts made in the past 60 years, and thus, it may not be

surprising to see apparent relationships between ELM and

different techniques. As analyzed in this paper, the essential

differences between ELM and those mentioned related

works are subtle but crucial.

It is not rare to meet some cases in which intuitively

speaking some techniques superficially seem similar to

each other, but actually they are significantly different.

ELM theories provide a unifying platform for wide types of

neural networks, Fourier series [25], wavelets [47, 48],

mathematical series [5, 25, 26], etc. Although the rela-

tionship and differences between ELM and those earlier

works have clearly been discussed in the main context of

this paper, in response to the anonymous malign letter,

some more background and discussions need to be high-

lighted in this appendix further.

Misunderstanding on References

Several researchers thought that ELM community has not

referred to those earlier related work, e.g., Schmidt et al.

[1], RVFL [2] and Broomhead and Lowe [61]. We wish to

draw their serious attention that our earlier work (2008) [4]

has explicitly stated: ‘‘Several researchers, e.g., Baum [31],

Igelnik and Pao [32], Lowe [35], Broomhead and Lowe

[61], Ferrari and Stengel [62], have independently found

that the input weights or centers ai do not need to be tuned’’

(these works were published in different years, one did not

refer to the others. The study by Ferrari and Stengel [62]

has been kindly referred in our work although it was even

published later than ELM [24]). In addition, in contrast to

the misunderstanding that those earlier works were not

referred, we have even referred to Baum [31]’s work and

White’s QuickNet [54] in our 2008 works [4, 5], which we

consider much earlier than Schmidt et al. [1] and RVFL [2]

in the related research areas. There is also a misunder-

standing that Park and Sandberg’s RBF theory [21] has not

been referred in ELM work. In fact, Park and Sandberg’s

RBF theory has been referred in the proof of ELM’s the-

ories on RBF cases as early as 2006 [25].

Although we did not know Schmidt et al. [1] until 2012,

we have referred to it in our work [6] immediately. We

spent almost 10 years (back to 1996) on proving ELM

theories and may have missed some related works. How-

ever, from literature survey point of view, Baum [31] may

be the earliest related work we could find so far and has

been referred at the first time. Although the study by

Schmidt et al. [1] is interesting, the citations of Schmidt

et al. [1] were almost zero before 2013 (Google Scholar),

and it is not easy for his work to turn up in search engine

unless one intentionally flips hundreds of search pages.

Such information may not be available in earlier generation

of search engine when ELM was proposed. The old search

engines available in the beginning of this century were not

as powerful as most search engines available nowadays and

many publications were not online 10–15 years ago. As

stated in our earlier work [4], Baum [31] claimed that (seen

from simulations) one may fix the weights of the connec-

tions on one level and simply adjust the connections on the

other level, and no (significant) gain is possible by using an

algorithm able to adjust the weights on both levels simul-

taneously. Surely, almost every researcher knows that the

easiest way is to calculate the output weights by least-

square method (closed-form) as done in Schmidt et al. [1]

and ELM if the input weights are fixed.

Loss of Feature Learning Capability

The earlier works (Schmidt et al. [1], RVFL [2], Broomhead

and Lowe [61]) may lose learning capability in some cases.

As analyzed in our earlier work [3, 4], although Lowe

[35]’s RBF network chooses RBF network centers ran-

domly, it uses one value b for all the impact factors in all

RBF hidden nodes, and such a network will lose learning

capability if the impact factor b is randomly generated.

Thus, in RBF network implementation, the single value of

impact factors is usually adjusted manually or based on

cross-validation. In this sense, Lower’s RBF network does

not use random RBF hidden neurons, let alone wide types

of ELM networks.7 Furthermore, Chen et al. [64] point out

7 Differences between Lowe’s RBF networks and ELM have been

clearly given in our earlier reply [3] in response to another earlier

comment letter on ELM [63]. It is not clear why several researchers in

their anonymous letter refer to the comment letter on ELM [63] for

Lowe [35]’s RBF network and RVFL but do not give readers right

and clear information by referring to the response [3].
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that such Lowe [35, 61]’s RBF learning procedure may not

be satisfactory and thus they proposed an alternative

learning procedure to choose RBF node centers one by one

in a rational way which is also different from random

hidden nodes used by ELM.

Schmidt et al. [1] at its original form may face difficulty

in sparse data applications; however, one can linearly ex-

tend sparse ELM solutions to Schmidt et al. [1] (the re-

sultant solution referred to ELM?b).

ELM is efficient for auto-encoder as well [39]. How-

ever, when RVFL is used for auto-encoder, the weights of

the direct link between its input layer to its output layer

will become a constant value one and the weights of the

links between its hidden layer to its output layer will be-

come a constant value zero; thus, RVFL will lose learning

capability in auto-encoder cases. Schmidt et al. [1] which

has the biases in output nodes may face difficulty in auto-

encoder cases too.

It may be difficult to implement those earlier works

(Schmidt et al. [1], RVFL [2], Broomhead and Lowe [61])

in multilayer networks, while hierarchical ELM with multi-

ELM each working in one hidden layer can be considered

as a single ELM itself. Table 2 summarizes the relationship

and main differences between ELM and those earlier

works.
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