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Abstract Extreme learning machines (ELMs) basically

give answers to two fundamental learning problems: (1)

Can fundamentals of learning (i.e., feature learning, clus-

tering, regression and classification) be made without

tuning hidden neurons (including biological neurons) even

when the output shapes and function modeling of these

neurons are unknown? (2) Does there exist unified frame-

work for feedforward neural networks and feature space

methods? ELMs that have built some tangible links

between machine learning techniques and biological

learning mechanisms have recently attracted increasing

attention of researchers in widespread research areas. This

paper provides an insight into ELMs in three aspects, viz:

random neurons, random features and kernels. This paper

also shows that in theory ELMs (with the same kernels)

tend to outperform support vector machine and its variants

in both regression and classification applications with

much easier implementation.

Keywords Extreme learning machine � Support vector

machine � Least square support vector machine � ELM

kernel � Random neuron � Random feature � Randomized

matrix

Introduction

Support vector machine (SVM) [1] as a revolutionary

machine learning technique has been playing an important

role in both research and classification related applications

in the past two decades. SVM achieves higher general-

ization performance than conventional artificial neural

networks in most classification applications. In the original

implementation of SVM, one has to handle a quadratic

programming (QP) problem which is usually tedious and

time consuming. As one of the main variant of SVM, Least

square support vector machine (LS-SVM) [2] aims to avoid

the QP problem using equality constraints instead of the

inequality constraint adopted in conventional SVM. Com-

pared with SVM, LS-SVM is ease of implementation.

Extreme learning machines (ELMs) [3–7] become attrac-

tive to more and more researchers recently [8–20]. This

paper aims to review the ELM from random neurons and

kernels point of view and to build some relationship and

links between ELM, SVM and other related machine

learning techniques. Although it is out of question that

SVM and its variants achieve surprising performance in

most applications, different from some common concept in

the research community SVM and LS-SVM may perhaps

tend to achieve suboptimality in classification applications

due to some optimization constraints. This may be true to

some (if not most) of their variants as well.

Brief of SVM and LS-SVM

This section briefs the conventional SVM [1] and one of its

main variants LS-SVM [2].

SVM

Given a set of training data fðxi; tiÞgN
i¼1, where xi 2 Rd and

ti 2 f�1; 1g, SVM aims to maximize the separating margin
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of the two different classes as well as to minimize the

training errors ni, which is equivalent to:

Minimize : LPSVM ¼
1

2
w � wþ C

XN

i¼1

ni

Subject to : tiðw � /ðxiÞ þ bÞ� 1� ni; 8i
ni � 0; 8i

ð1Þ

where C is a user specified parameter and provides a trade-

off between minimizing the training error and maximizing

the distance 2=kwk of the separating margin of the two

different classes in the feature space; / : xi ! /ðxiÞ is a

nonlinear mapping which maps the training data xi from

the input space to a feature space.

The corresponding Lagrange function of the primal

SVM optimization (1) is:

LSVM ¼
1

2
w � wþ C

XN

i¼1

ni �
XN

i¼1

lini

�
XN

i¼1

ai

�
tiðw � /ðxiÞ þ bÞ � ð1� niÞ

�
ð2Þ

Based on the Karush–Kuhn–Tucker (KKT) theorem

[21], in order to find the optimal solutions of (2), we should

have:

oLSVM

ow
¼ 0 ¼) w ¼

XN

i¼1

aitihðxiÞ ð3aÞ

oLSVM

on
¼ 0 ¼) C ¼ ai þ li; 8i ð3bÞ

oLSVM

ob
¼ 0 ¼)

XN

i¼1

aiti ¼ 0 ð3cÞ

Substitute (3a)–(3c) into (2), therefore, to train such an

SVM is equivalent to solving the following dual optimi-

zation problem:

minimize :LDSVM
¼ 1

2

XN

i¼1

XN

j¼1

titjaiaj/ðxiÞ � /ðxjÞ �
XN

i¼1

ai

subject to :
XN

i¼1

aiti ¼ 0

0 � ai � C; 8i
ð4Þ

where each Lagrange multiplier ai corresponds to a training

sample ðxi; tiÞ. In SVM, the feature mapping / is usually

unknown, kernel function Kðu; vÞ ¼ /ðuÞ � /ðvÞ can be

used instead. In this case, the corresponding dual optimi-

zation problem is:

minimize :LDSVM
¼ 1

2

XN

i¼1

XN

j¼1

titjaiajKðxi; xjÞ �
XN

i¼1

ai

subject to :
XN

i¼1

aiti ¼ 0

0 � ai � C; 8i
ð5Þ

In addition to the popular SVM cost function (1), in their

classical paper on SVM [1], Cortes and Vapnik originally

also proposed a more general SVM cost function [1]:

Minimize : LPSVM
¼ 1

2
w � wþ C

XN

i¼1

nr
i

 !

Subject to : tiðw � /ðxiÞ þ bÞ� 1� ni; 8i
ni� 0; 8i

ð6Þ

where r [ 0. SVM is more well known for the case where

r ¼ 1.

LS-SVM

Least square support vector machine [2] targets at avoiding

the QP problem (5) faced by classical SVM. Instead of the

inequality constraints (1) adopted in the classical SVM,

equality constraints are used in LS-SVM [2]. In LS-SVM,

the classification problem is formulated as:

Minimize : LPLS�SVM
¼ 1

2
w � wþ C

XN

i¼1

n2
i

 !

Subject to : tiðw � /ðxiÞ þ bÞ ¼ 1� ni; 8i
ð7Þ

Based on the KKT theorem, to train such a LS-SVM is

equivalent to solving the following dual optimization

problem:

LLS�SVM ¼
1

2
w � wþ C

XN

i¼1

n2
i

 !

�
XN

i¼1

aiðti w � /ðxiÞ þ bÞ � 1þ nið Þ
ð8Þ

Based on the KKT theorem, the following optimality

conditions of (8) should be satisfied:

oLLS�SVM

ow
¼ 0! w ¼

XN

i¼1

aiti/ðxiÞ ð9aÞ

oLLS�SVM

ob
¼ 0!

XN

i¼1

aiti ¼ 0 ð9bÞ

oLLS�SVM

oni

¼ 0! ai ¼ Cni; 8i ð9cÞ
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oLLS�SVM

oai

¼ 0! tiðw � /ðxiÞ þ bÞ � 1þ ni ¼ 0; 8i

ð9dÞ

Furthermore, the above equations can be equivalently

written as:

0 TT

T
I

C
þXLS�SVM

2
4

3
5 b

a

� �
¼

0 TT

T
I

C
þ ZZT

2
4

3
5 b

a

� �
¼

0

1~

� �

ð10Þ

where

Z ¼

t1/ðx1Þ
..
.

tN/ðxNÞ

2

664

3

775

XLS�SVM ¼ ZZT

ð11Þ

The feature mapping /ðxÞ is a row vector, T ¼ ½t1;

t2; � � � ; tN �T , a ¼ ½a1; a2; � � � ; aN �T and 1~¼ ½1; 1; � � � ; 1�T .

For kernel function Kðu; vÞ ¼ /ðuÞ � /ðvÞ, we have matrix

XLS�SVM:

XLS�SVMi;j ¼ titj/ðxiÞ � /ðxjÞ ¼ titjKðxi;xjÞ ð12Þ

Review of ELM

Since its inception, back-propogation (BP) learning algo-

rithm [22–25] and its variants have been playing dominant

roles in training feedforward neural networks. It is well

known that BP learning algorithm and its variants face

several challenging issues such as local minima, trivial

human intervention and time consuming in learning.

Although thousands of researchers (from almost all uni-

versities in the world) had spent almost twenty years

(1986–2005) on studying feedforward neural networks,

there has no much significant progress in finding efficient

learning algorithms for feedforward neural network except

for mainly being focusing on BP algorithms and its vari-

ants. In some sense, the main research stream itself in

feedforward neural networks somehow has been stuck in

‘‘local minima’’ as BP algorithm does. SVM as an alter-

native solution to training feedforward neural networks was

proposed in 1995 and became popular since the early of

this century (around 2004) when some researchers may

have started losing confidence on artificial neural networks.

ELM [3–7] was originally inspired by biological learn-

ing and proposed to overcome the challenging issues faced

by BP learning algorithms. Brain learning is sophisticated;

however, brain usually works universally for feature

extraction, clustering, regression, classification and

requires zero human intervention (in tuning ‘‘user specified

parameters’’) and almost zero time in learning given

particular samples in many cases. Inspired by these bio-

logical learning features, we have conjectured that some

part of brain systems should have random neurons with all

their parameters independent of the environments [3, 5–7,

26], and the resultant technique was referred to ELMs.1 Its

computer-based learning efficiency was verified as early as

in 2004 [3], its universal approximation capability was

rigorously proved in theory in 2006–2008 [6, 7, 26], and its

concrete biological evidence seems to subsequently appear

in 2011–2013 [27–30].

Unlike other so-called randomness (semi-randomness)-

based learning methods/networks [31], all the hidden nodes

in ELM are not only independent of the training data but

also independent of each other. Although hidden nodes are

important and critical, they need not be tuned and the

hidden node parameters can be randomly generated

beforehand. Unlike conventional learning methods which

MUST see the training data before generating the hidden

node parameters, ELM can generate the hidden node

parameters before seeing the training data.

Learning Principles

ELM was first proposed for the single-hidden layer feed-

forward neural networks (SLFNs) and was then extended

to the generalized single-hidden layer feedforward net-

works where the hidden layer need not be neuron alike [7,

26, 32].

From the network architecture point of view, the output

function of ELM for generalized SLFNs is

fLðxÞ ¼
XL

i¼1

bihiðxÞ ¼ hðxÞb ð13Þ

where b ¼ ½b1; � � � ; bL�
T

is the vector of the output weights

between the hidden layer of L nodes to the m� 1 output

nodes, and hðxÞ ¼ ½h1ðxÞ; � � � ; hLðxÞ� is the output (row)

vector of the hidden layer with respect to the input x. hiðxÞ
is the output of the ith hidden node output, and the output

functions of hidden nodes may not be unique. Different

1 Instead of the ambiguous word ‘‘randomness’’ such as in ‘‘random

features’’ and ‘‘random networks,’’ ‘‘Extreme’’ here means to move

beyond conventional artificial learning techniques and to move

toward brain alike learning. ELM aims to break the barriers between

the conventional artificial learning techniques and biological learning

mechanism. ‘‘Extreme learning machine (ELM)’’ represents a suite of

machine learning techniques in which hidden neurons need not be

tuned. This includes but is not limited to random hidden nodes, it also

includes kernels. On the other hand, instead of only considering

network architecture such as randomness and kernels, in theory ELM

also somehow unifies brain learning features, neural network theory,

control theory, matrix theory, and linear system theory which were

considered isolated with big gaps before. Details can be found in this

paper.
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output functions may be used in different hidden neurons.

In particular, in real applications, hiðxÞ can be

hiðxÞ ¼ Gðai; bi; xÞ; ai 2 Rd; bi 2 R ð14Þ

where Gða; b; xÞ is a nonlinear piecewise continuous

function satisfying ELM universal approximation capabil-

ity theorems [6, 7, 26]. For example, such nonlinear

piecewise continuous functions can be but are not limited

to:

1. Sigmoid function:

Gða; b; xÞ ¼ 1

1þ expð�ða � xþ bÞÞ ð15Þ

2. Fourier function[6, 33]:

Gða; b; xÞ ¼ sinða � xþ bÞ ð16Þ

3. Hardlimit function [6, 34]:

Gða; b; xÞ ¼
1; if a � x� b� 0

0; otherwise

�
ð17Þ

4. Gaussian function [6, 32]:

Gða; b; xÞ ¼ expð�bkx� ak2Þ ð18Þ

5. Multiquadrics function [6, 32]:

Gða; b; xÞ ¼ ðkx� ak2 þ b2Þ1=2 ð19Þ

Definition 3.1 A neuron (or node) is called a random

neuron (node) if all its parameters (e.g., ða; bÞ in its output

function Gða; b; xÞÞ are randomly generated based on a

continuous sampling distribution probability.

hðxÞ actually maps the data from the d-dimensional

input space to the L-dimensional hidden layer random

feature space (ELM feature space) where the hidden node

parameters are randomly generated according to any con-

tinuous sampling distribution probability, and thus, hðxÞ is

indeed a random feature mapping.

Definition 3.2 [6, 7, 26] A hidden layer output mapping

hðxÞ is said to be an ELM random feature mapping if all its

hidden node parameters are randomly generated according

to any continuous sampling distribution probability and

such hðxÞ has universal approximation capability, that is,

khðxÞb� f ðxÞk ¼ limL!1 k
PL

i¼1 bihiðxÞ � f ðxÞk ¼ 0

holds with probability one with appropriate output weights

b.

According to Bartlett’s neural network generalization

theory [35], for feedforward neural networks reaching

smaller training error, the smaller the norms of weights are,

the better generalization performance the networks tend to

have. We conjecture that this may be true to the

generalized SLFNs where the hidden neurons may not be

neuron alike [7, 26].

From the learning point of view, unlike traditional

learning algorithms [24, 36–42], ELM theory aims to reach

the smallest training error but also the smallest norm of

output weights [3, 5]:

Minimize : kbkr1

p þ CkHb � Tkr2

q ð20Þ

where r1 [ 0; r2 [ 0; p; q ¼ 0; 1
2
; 1; 2; � � � ;þ1, H is the

hidden layer output matrix (randomized matrix):

H ¼

hðx1Þ
..
.

hðxNÞ

2
664

3
775 ¼

h1ðx1Þ � � � hLðx1Þ
..
. ..

. ..
.

h1ðxNÞ ..
.

hLðxNÞ

2
664

3
775 ð21Þ

and T is the training data target matrix:

T ¼

tT
1

..

.

tT
N

2
664

3
775 ¼

t11 � � � t1m

..

. ..
. ..

.

tN1 � � � tNm

2
664

3
775 ð22Þ

ELM follows some learning rules (or learning principles):

Learning Principle I: Hidden neurons of SLFNs

with almost any nonlinear piecewise continuous

activation functions or their linear combinations can

be randomly generated according to any continuous

sampling distribution probability, and such hidden

neurons can be independent of training samples and

also its learning environment.

According to ELM learning theory, widespread type of

feature mappings hðxÞ can be used in ELM so that ELM

can approximate any continuous target functions (refer to

Huang et al. [6, 7, 26, 32] for details). Activation functions

such as sigmoid function used in artificial neural networks

[40, 43] are oversimplified modeling of some live brain

neurons and may be different from the truth. In real brain

learning mechanism, the actual activation functions of

living brain neurons are unknown.

It may have no way for human beings to know the exact

activation function formula of live brain neurons, and

individual neurons of same type may have similar but not

the exact same activation function as well. Although the

actual activation functions of living brain neurons are

unknown, most likely the actual activation functions of

many brain neurons are nonlinear piecewise continuous.

Thus, Learning Principle I of ELM may be widely adopted

in some brain learning mechanism without the need of

knowing the actual activation function of living brain

neurons. In fact, we have

Theorem 3.1 Universal approximation capability [6, 7,

26]: Given any bounded non-constant piecewise
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continuous function as the activation function in hidden

neurons, if by tuning parameters of hidden neuron activa-

tion function SLFNs can approximate any target continu-

ous function, then for any continuous target function f ðxÞ
and any randomly generated function sequence fhiðxÞgL

i¼1,

limL!1 k
PL

i¼1 bihiðxÞ � f ðxÞk ¼ 0 holds with probability

one with appropriate output weights b.

In fact, SLFNs with almost any nonlinear piecewise

continuous activation functions or their linear combina-

tions not only can approximate any continuous target

functions but also separate arbitrary disjoint regions of any

shapes with hidden neurons randomly generated indepen-

dent of training samples. Especially, the following theorem

on ELM’s classification capability has been proved in

Huang et al. [32]:

Theorem 3.2 Classification capability [32]: Given a

feature mapping hðxÞ, if hðxÞb is dense in CðRdÞ or in

CðMÞ, where M is a compact set of Rd, then SLFNs with

random hidden layer mapping hðxÞ can separate arbitrary

disjoint regions of any shapes in Rd or M.

Theorem 3.1 actually implies that if SLFNs with

bounded non-constant piecewise continuous functions have

universal approximation capability, no particular learning

methods are required to adjust the hidden neurons. In other

words, as many (living brain) neurons’ activation functions

are bounded nonlinear piecewise continuous although their

shapes/modeling may be unknown, hidden neurons in

SLFNs (some parts of living brains) can be randomly

generated without further tuning.

Learning Principle II: For the sake of system sta-

bility and generalization performance, the norm of

the output weights of generalized SLFNs need to be

smaller with some optimization constraints.

Learning Principle III: From optimization point of

view, the output nodes of SLFNs should have no

biases (or set bias zero).

In contrast to the common understanding (since the

inception of ‘‘artificial’’ neural networks) that the output

nodes need to have the biases (and such biases may be used

in different applications due to different reasons), this

learning principle actually shows that from optimization

constraints point of view such biases in the output nodes

may cause some dilemma. This is also one of the key

differences between ELM and other random methods such

as Schmidt et al. [40]. Detail analysis will be given in

section ‘‘Optimization Constraints with Kernels: ELM and

SVM/LS-SVM’’.

Basic ELM

In order to satisfy Learning Principle II, the basic imple-

mentation of ELM (when C ¼ þ1) [3, 5] uses the mini-

mal norm least square method instead of the standard

optimization method in the solution:

b ¼ HyT ð23Þ

where Hy is the Moore–Penrose generalized inverse of

matrix H [44, 45]. Different methods can be used to cal-

culate Moore–Penrose generalized inverse of a matrix:

orthogonal projection method, orthogonalization method,

iterative method and singular value decomposition (SVD)

[45]. The output weights b can also be obtained through

other iterative methods [46, 47]. Unlike Schmidt et al. [40]

which applies sigmoid function in the hidden layer, almost

any nonlinear activation function can be used in this ELM

implementation (23) and the hidden nodes need not be

additive type or radial basis function (RBF) type. For

example, it is challenging to provide direct solutions to

threshold networks, and many researchers spent much

effort in such investigation[48–51]. In fact, it seems that

there was no direct solution on threshold networks in the

past twenty years (around 1986-2005) until when ELM

provides the direct solution [34].

Fern�andez-Delgado [46] also provides an alternative

solution of ELM when C ¼ 0.

Different type of constraints which are application

dependent may exist for the optimization objective func-

tion (20). In order to compare with SVM and LS-SVM, two

specific type of optimization constraints of ELM

(r1 ¼ p ¼ 2) are especially considered as follows. It

should be noted that:

(1) SVM and LS-SVM may only work with kernels as

feature mapping /ðxÞ in SVM and LS-SVM is

unknown.

(2) ELM can work with kernels if hðxÞ is unknown.

(3) ELM can also work with ELM kernels or non-

kernels if hðxÞ is known.

Inequality Optimization Constraints Based ELM

Consider r1 ¼ 2, r2 ¼ 1, p ¼ 2, and q ¼ 1 in ELM opti-

mization formula (20) for binary classification case first

(m ¼ 1). From the standard optimization theory point of

view, the objective of ELM in minimizing both the training

errors ni and the output weights b can be written as [52,

53]:

380 Cogn Comput (2014) 6:376–390
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Minimize : LPELM
¼ 1

2
kbk2 þ C

XN

i¼1

ni

Subject to : tib � hðxiÞ� 1� ni; i ¼ 1; � � � ;N
ni � 0; i ¼ 1; � � � ;N

ð24Þ

Based on KKT conditions, to train ELM for binary

classification is then equivalent to solving the following

dual optimization problem:

minimize : LDELM
¼ 1

2

XN

i¼1

XN

j¼1

titjaiajKðxi; xjÞ �
XN

i¼1

ai

subject to : 0 � ai � C; i ¼ 1; � � � ;N
ð25Þ

where Kðxi; xjÞ ¼ hðxiÞ � hðxjÞ.
There may exist different ways to finding the Lagrange

multipliers of the above-mentioned dual optimization

problem (25) [52, 53].

Equality Optimization Constraints Based ELM

Consider r1 ¼ r2 ¼ p ¼ q ¼ 2 in ELM optimization for-

mula (20) for both regression and (binary or multi-class)

classification cases. For instance, we consider the ELM

with multi-output nodes. For m-class of applications, ELM

has m output nodes (m [ 2). (Single output nodes can be

used in binary classification applications.) If the original

class label of the training sample is p; the expected output

vector of the m output nodes is ti ¼ ½0; :::; 0; 1
p

; 0; � � � ; 0�T .

In this case, only the pth element of ti ¼ ½ti;1; � � � ; ti;m�T is

one while the rest elements are set zero. From the standard

optimization theory point of view, the objective of ELM in

minimizing both the training errors and the output weights

can be written as [32]:

Minimize : LPELM
¼ 1

2
kbk2 þ C

1

2

XN

i¼1

knik
2

Subject to : hðxiÞb ¼ tT
i � nT

i ; i ¼ 1; � � � ;N
ð26Þ

where ni ¼ ½ni;1; � � � ; ni;m�T is the training error vector of

the m output nodes with respect to the training sample xi.

Based on the KKT theorem, to train ELM is equivalent to

solving the following dual optimization problem:

LDELM
¼ 1

2
kbk2 þ C

1

2

XN

i¼1

knik2

�
XN

i¼1

Xm

j¼1

ai;j hðxiÞbj � ti;j þ ni;j

� �
ð27Þ

where bj is the vector of the weights linking the hidden

layer to the jth output node, and b ¼ ½b1; � � � ; bm�. We can

have the KKT corresponding optimality conditions as

follows:

oLDELM

obj

¼ 0! bj ¼
XN

i¼1

ai;jhðxiÞT ! b ¼ HTa ð28aÞ

oLDELM

oni

¼ 0! ai ¼ Cni; i ¼ 1; . . .;N ð28bÞ

oLDELM

oai

¼ 0! hðxiÞb� tT
i þ nT

i ¼ 0; i ¼ 1; . . .;N ð28cÞ

where ai ¼ ½ai;1; � � � ; ai;m�T and a ¼ ½a1; � � � ; aN �T .

The above-mentioned KKT conditions can result in

different solutions as follows. Depending on practical

applications, users may use other methods such as iterative

methods as well.

Kernel case

Substitute Eqs. (28a) and (28b) into Eq. (28c), we have:

I

C
þHHT

� �
a ¼ T ð29Þ

From Eqs. (28a) and (29), we have:

b ¼ HT I

C
þHHT

� ��1

T ð30Þ

The ELM output function of ELM is:

fðxÞ ¼ hðxÞb ¼ hðxÞHT I

C
þHHT

� ��1

T ð31Þ

We can define a kernel matrix for ELM as follows:

XELM ¼ HHT : XELMi;j ¼ hðxiÞ � hðxjÞ ¼ Kðxi;xjÞ
ð32Þ

Then, the ELM output function (31) can be as:

fðxÞ ¼ hðxÞHT I

C
þHHT

� ��1

T

¼

Kðx; x1Þ
..
.

Kðx; xNÞ

2
664

3
775

T

I

C
þXELM

� ��1

T

ð33Þ

In this specific case, similar to SVM and LS-SVM, the

feature mapping hðxÞ need not be known to users, instead

one may use its corresponding kernel Kðu; vÞ (e.g.,

Kðu; vÞ ¼ expð�cku� vk2Þ). When hðxÞ is randomly

generated, we call Kðxi;xjÞ ¼ hðxiÞ � hðxjÞ as ELM (ran-

dom) kernel.
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Non-kernel Case

From Eqs. (28a) and (28b), we have:

b ¼ CHTn ð34Þ

n ¼ 1

C
HT
� �y

b ð35Þ

From Eq. (28c), we have:

Hb� Tþ 1

C
HT
� �y

b ¼ 0

HT Hþ 1

C
HT
� �y

� �
b ¼ HT T

b ¼ I

C
þHT H

� ��1

HT T

ð36Þ

In this case, the ELM output function is:

fðxÞ ¼ hðxÞb ¼ hðxÞ I

C
þHT H

� ��1

HTT ð37Þ

Readers can refer to Huang et al. [32] for details of the

above-mentioned.

Randomness: Random Neurons and Random Weights

Randomness is ambiguous and confusing in the related

research community. Huang et al. [26, 56] brief the rela-

tionship and difference between RBF networks, random

vector version of the functional-link (RVFL) net [31],

QuickNet [41, 42, 57, 58] and other related works.

Baum [59] found from experiments in 1988 that the

weights of the connections on one level can be simply

fixed. Baum [59] did not discuss whether all the hidden

node biases bi should be randomly generated. Baum’s

experiments may be related to Rosenblatt’s perceptron

[36–39]. We will discuss Rosenblatt’s perceptron in section

‘‘Conclusions’’.

Almost in the same time (1989), White [41, 42, 57, 58]

propose a network called QuickNet which uses ‘‘random

hidden nodes’’ in the SLFNs augmented by connections

from the input layer to the output layer.2

In 1992, Schmidt et al. [40] suggest to use random

hidden nodes in the SLFNs with sigmoid activation func-

tions. The universal approximation capability of the

2 We would like thank Halbert White for the fruitful discussions on

ELM during our personal communications and meetings in 2011.

1 d

1d

d Input Nodes

L+d Hidden Nodes. Enhanced
neurons have same type of output
function:

Output Node

jo

jx

1 d

Input Patterns Enhanced Patterns
(Algebraic sum based)

Ld

(a) RVFL and QuickNet

1 d

1 i L

1 i L

jx

( , )i iba

Feature learning
Clustering
Regression
Classification

L Random Hidden Neurons (which need not be 
algebraic sum based) or other  ELM feature
mappings. Different type  of output functions
could be used in different neurons: 

d Input Nodes

Problem based 
optimization constraints

(b) ELM Feature Mapping

Fig. 1 Difference and

relationship among RVFL [54],

QuickNet [41, 42] and ELM:

ELM could be considered to

simply RVFL and QuickNet

with the introduction of

optimization constraints.

However, in essence, ELM was

proposed with the inspiring

biological learning where one

may not have a way to know the

exact shares/modeling of the

neurons. ELM using standard

feedforward neural networks is

efficient in regression,

classification, clustering[55] and

feature learning
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proposed solution was not proved. ELM theory shows

instead of sigmoid function, ELM with wide type of acti-

vation functions has universal both approximation capa-

bility and classification capability. Unlike ELM, there is no

optimization constraints required in Schmidt et al. [40], and

thus, it may have a gap among the random weight network

proposed by Schmidt et al. [40], SVM, neural network

generalization performance and system stability, and such

gap is finally filled by ELM theory and techniques.

In 1994, Pao et al. [54] proposed a random vector version

of the functional-link (RVFL) net.3 Both RVFL [54] and

White’s QuickNet [41, 42] have the same network archi-

tecture and network output function fLðxÞ ¼
PL

i¼1 bihiðxÞ þ
h � x but different learning algorithms. QuickNet readjusts

the output weights of the existing hidden nodes after a new

hidden node is added. RVFL uses the conventional gradient

descent method which ELM tries to avoid. Both RVFL and

QuickNet share the same network architecture and do not use

standard feedforward neural networks (cf. Fig. 1). Unlike

ELM, this type of RVFL uses a direct link between the input

layer and the output layer. In other words, the hidden layer

feature mapping in RVFL and QuickNet is ½h1ðxÞ; � � � ;
hLðxÞ; x1; � � � ; xN�, which is not a random feature (cf. Defi-

nition 3.2), while the random feature in ELM is

½h1ðxÞ; � � � ; hLðxÞ�.
In 1995, Igelnik and Pao [31] try to prove the universal

approximation of RVFL based on partial randomness in

hidden neurons, which is different from ELM in which

hidden neurons are linearly independent: in RVFL, the

input weights ai are ‘‘uniformly’’ drawn from a probabi-

listic space Vd
a ¼ ½0; aX� � ½�aX; aX�d�1

(d: the input

dimension). The hidden node biases bi depend on the

weights ai and some other parameters yi and ui: bi ¼
�ðaai � yi þ uiÞ which depends on the training data distri-

bution. Igelnik and Pao [31] only prove the universal

approximation capability of RVFL with random input

weights and tuned hidden neuron biases; it does not address

the universal approximation capability of a standard SLFN

with both random input weights and random hidden neuron

biases. Thus, although some kind of randomness (i.e.,

random input weights) is used in this type of RVFLs [31],

unlike ELM, RVFL uses neither random hidden neurons

(cf. Definition 3.1) nor random features (cf. Defini-

tion 3.2). This subtle point of ‘‘data independent hidden

neurons’’ in ELM may actually disclose the essence of

some biological learning and show the significant differ-

ence between biological learning methods (e.g., ELM) and

artificial learning methods (e.g., RVFL, etc.). On the other

hand, ELM theories on the universal approximation capa-

bility can be linearly extended to RVFL and QuickNet.

It should be highlighted that in ELM random hidden

nodes mean all the parameters are randomly generated and

independent of training data. For example, if additive

hidden nodes are used, hiðxÞ ¼ gðai � xþ biÞ where g is any

nonlinear piecewise continuous activation function. In

ELM, both ai and bi will be randomly generated and

independent of the training data. Unlike ELM, none of the

earlier methods require the optimization constraints in its

output weights. Without the necessary optimization con-

straints, it would be impossible to build up the links

between those traditional neural network learning methods

and support vector machines.

Optimization Constraints with Kernels: ELM

and SVM/LS-SVM

It has been analyzed in theory and verified by simulations

over wide types of applications [32, 52, 53] that SVM and

LS-SVM may provide solutions suboptimal to ELMs if the

same kernels are used. Recently, more and more research

works show that ELM-based implementation outperforms

Origin of 
SVM feature space 

0 (a)

Origin of 
ELM feature space 

=0

=+1

=-1

(b)

Fig. 2 As SVM was originally proposed for classification, universal

approximation capability was not considered at the first place.

Actually the feature mappings /ðxÞ are unknown and may not satisfy

universal approximation condition, b need to be present to absorb the

system error. ELM was originally proposed for regression, the feature

mappings hðxÞ are known, and universal approximation capability

was considered at the first place. In ELM, the system error tends to be

zero and b should not be present

3 We would like to thank Boris Igelnik for discussing the relationship

and difference between RVFL and ELM in our personal communi-

cation, and for sharing the RVFL patent information.
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SVM with classification accuracy rate significantly

improved [32, 60–64]. Based on our earlier works [32, 52,

53], this section further gives a more complete and

focusing discussion on the reasons why in contrast to the

common understanding and sense of the research com-

munity SVM and LS-SVM perhaps tend to lead to sub-

optimal solutions.

Bias b

Just due to different ways of handling the output node bias

b, different variants (e.g., LS-SVM, proximal support

vector machine (PSVM) [65]) have even been proposed,

which implies the output node bias b plays a critical role in

SVM and its variants. The separation capability of SVM

was considered more important than its regression capa-

bility when SVM was first proposed to handle binary

classification applications. In this case, its universal

approximation capability may somehow have been

neglected [1]. This may also partially be due to the inborn

reason that the feature mapping /ðxÞ in SVM is unknown,4

and thus, it is difficult to study the universal approximation

capability of SVM without knowing feature mapping /ðxÞ.

From function approximation point of view, since /ðxÞ
is unknown and may not have universal approximation

capability [1], given a target continuous function f ðxÞ and

any small error bound �[ 0, there may not exist w such

that kw � /ðxÞ � f ðxÞk\�. In other words, there may exist

some system errors even if SVM and its variants with

appropriate kernels can classify different classes well, and

these system errors need to be absorbed by the bias b. This

may be the reason why in principle the bias b has to remain

in the optimization constraints (1) and (7) for SVM and LS-

SVM solutions.

From classification point of view, it is reasonable to

think that the separating hyperplane in SVM may not

necessarily pass through the origin in the SVM feature

space and thus a bias b is preferred in the optimization

constraints of SVM and LS-SVM so that the separating

hyperplane can be adjusted accordingly: w � /ðxiÞ þ b ¼ 0

(cf. Fig. 2a).

However, all the parameters of the ELM mapping hðxÞ
are randomly generated, and the ELM mapping hðxÞ
becomes known to users finally. Such ELM feature map-

ping hðxÞ includes but is not limited to sigmoid functions,

RBF hidden nodes, fully complex nodes [4], wavelets [66,

67] and Fourier series. According to ELM theories [3, 5–7,

26], ELM with almost any nonlinear piecewise continuous

functions hðxÞ has the universal approximation capability,

and the separating hyperplane tends to pass through the

origin in the ELM feature space. Thus, the bias b is

required neither in the output nodes nor in the ELM’s

optimization constrains (24) and (26) (cf. Fig. 2b).

When a kernel is used in ELM, the feature mapping hðxÞ
need not be known to users, instead one may use its cor-

responding kernel Kðu; vÞ. ELM originally focuses on the

regression of ‘‘generalized’’ single-hidden layer feedfor-

ward neural networks (SLFNs) and ELM naturally has the

universal approximation capability at the first place by

default. In fact if some target functions cannot be

approximated by a SLFN, such a SLFN need not be con-

sidered at all. In other words, the universal approximation

capability is a necessary condition required for hðxÞ in

ELM. In this case, the bias b is not required either. Suykens

et al. [68] also show that the bias b may not be required in

the solutions.5 However, Suykens et al. [68] do not point

out that the existence of bias b may result in additional

constraints and make the final solution tend to be subop-

timal although the difference in classification rates

Baum
(1988)

QuickNet
(1989)

Schmidt,
et al

(1992)

RVFL
(1994)

LS-SVM
(1999)

PSVM
(2001)

Random
Projection

(1998)

PCA
(1901)

Rosenblatt
Perceptron

(1958)

SVM
(1995)

Biological
learning

?

?
?

Feature space methods

Neural network methods

Fig. 3 Missing relationship among artificial neural networks, feature

space methods and biological learning mechanism

4 This is also the reason why SVM and its variants focus on kernels

while ELM is valid for both kernel and non-kernel cases.
5 We would like to thank Johan A. K. Suykens for showing us the

analysis of the role of the bias b of LS-SVM in their monograph [68]

in our personal communication.

384 Cogn Comput (2014) 6:376–390

123

Author's personal copy



obtained by the solutions with and without the bias b may

not be apparent in some binary cases.

Hyperplane Constraint:
PN

i¼1

aiti ¼ 0

KKT conditions (3c) and (9b) are necessary conditions for

one to find the optimal solutions of the classical SVM and

LS-SVM, that is:

oLSVM

ob
¼ 0 ¼)

XN

i¼1

aiti ¼ 0

oLLS�SVM

ob
¼ 0 ¼)

XN

i¼1

aiti ¼ 0

ð38Þ

That means, due to the existence of b in SVM and LS-

SVM, one of the necessary conditions for both SVM and

LS-SVM optimization solutions is
PN

i¼1 aiti ¼ 0.

In contrast, according to ELM theories [3, 5–7, 26],

ELM has the universal approximation capability and thus

the separating hyperplane of ELM basically tends to pass

through the origin in the ELM feature space (cf. Fig. 2b),

there is no bias b in the optimization constraints of ELM

(24) and (26). Thus, ELM does not have the necessary

condition
PN

i¼1 tiai ¼ 0 in its dual optimization problem. In

other words, compared with SVM and LS-SVM, ELM has

similar dual optimization objective functions6 but with the

loose conditions. The solution space (the hyperplanePN
i¼1 aiti ¼ 0) of SVM and LS-SVM is a subset of ELM

optimal solution space. Thus, SVM and LS-SVM perhaps

tend to find a solution sub-optimal to ELM’s solution when

the same kernels are used. In general, we may have:

If same kernels are used in ELM and SVM/LS-SVM,

SVM and LS-SVM naturally lead to sub-optimal

solutions.

Feature mapping to form the kernels can be unknown

mappings or random feature mappings (ELM random

hidden layer output mappings).

Another open problem would be: is this so-called nec-

essary condition
PN

i¼1 aiti ¼ 0 for SVM and LS-SVM really

reasonable?

The hyperplane
PN

i¼1 aiti ¼ 0 in which SVM and LS-

SVM search for the optimal solutions in the feature space

only depends on the target output vector ½t1; � � � ; tN �T and is

independent of the input features xi. Given two applica-

tions, for examples, weather forecasting and face-based

gender recognition. Suppose that there are 50 samples for

sunny cities (50 positive samples) and 50 samples for

raining cities (50 negative samples) in the weather fore-

casting case, and there are 50 boy face photos (50 positive

samples) and 50 girl face photos (50 negative samples) in

the gender recognition case. Since target labels ti are same

in both weather forecasting and gender recognition cases,

the same necessary condition
PN

i¼1 aiti ¼ 0 need to be

satisfied for both applications (although in different feature

spaces). In other words, both weather forecasting and

gender recognition applications which have no relevance at

all now become relevant in SVM and LS-SVM’s solutions,

this is obviously contradictory to the irrelevance fact. This

actually implies that the so-called necessary conditionPN
i¼1 aiti ¼ 0 required in SVM and its variants may not be

reasonable and the bias b should not be requested. This

causes some interesting and unexpected dilemma in SVM

and LS-SVM optimization problems.7 As analyzed before,

on the other hand, in SVM and LS-SVM, feature mapping

/ðxÞ is unknown and b is required to absorb the system

errors (or to shift the separating hyperplane in the feature

space properly).

Poggio et al. [69] analyze the roles of the bias b from

kernel property point of view and show that

(1) For SVM with order 1 conditional positive definite

kernels, the bias b and the associated constraintPN
i¼1 aiti ¼ 0 are ‘‘a natural choice and is ‘de facto’

required for infinite dimensional kernels’’.

(2) For SVM with positive definite kernels, the bias b is

not required but allowed.

(3) It is also quite reasonable to have a constant b play

the role a threshold.

However, from the optimization point of view, our above-

mentioned analysis shows that the bias b should not exist no

matter whether the kernel is positive, conditional positive,

neither positive nor conditional positive, or even ELM ran-

dom kernels. Steinwart et al. [70] points out that ‘‘The geo-

metrical illustration of SVMs’ linear decision surface in the

feature space, which justified the use of an offset b that moves

the decision surface from the origin, has serious flaws’’.

Unlike our analysis, Poggio et al. [69] and Steinwart et al.

[70] do not show that the existence of b in SVM and its

variants may actually result in some contradiction and

making some irrelevant applications become ‘‘somehow

relevant.’’ This potential contradiction was first pointed out

6 Here, we only consider ELM specially for binary classification

applications which SVM and LS-SVM can handle. However, ELM

solutions need not be tightened in binary cases, the same solution can

be applied to multi-class cases and regression cases.

7 This dilemma may have existed to other random methods with

biases in the output nodes [40] if the structure risks were considered

in order to improve the generalization performance. In this case,

Schmidt et al. [40] would provide suboptimal solutions too. Further-

more, to our best knowledge, all of those random methods [31, 40]

have not considered structure risks at all and thus may become

overfitting easily.
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in our earlier work [52] which shows that b should not be

used. Although almost at the same time Steinwart et al. [70]

found that b is not required in SVM with positive definite

kernels, Steinwart et al. [70] adopt the same viewpoint as

Poggio et al. [69] that b is required for SVM with non-

positive definite kernels. Both Huang et al. [52] and Stein-

wart et al. [70] focus on binary classification cases.

Maximal Separating Margins in Feature Space

Neural network generalization performance theory [35]

shows that for feedforward neural networks reaching

smaller training error, the smaller the norms of weights are,

the better generalization performance the networks tend to

have. On the other hand, after hidden neuron parameters

are randomly generated, hðxÞ is known to users, ELM

output function (13) becomes linear, and only its

coefficient vector b is unknown, according to the ridge

regression theory [71], the smaller the norm of the output

weights b, the more stable the linear system is and the

better generalization performance the system can achieve.

For the above-mentioned two specific solutions of ELM,

the distance of the separating boundaries of the two classes

in the ELM feature is 2=kbk, thus to minimize the norm of

the output weights b in ELM (20) is actually to maximize

the separating margin. (cf. Fig. 2b)

Thus, ELM learning theory and algorithms naturally unify

the neural network generalization performance theory, linear

system stability theory, ridge regression theory and maximal

separating margin concept. However, in other words, the

maximal separating margin concept is a specific case of

neural network generalization performance theory, linear

system stability theory and ridge regression theory when

they are used in binary classification applications. Since
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2) Extend to kernels and high dimensionality of hidden mappings cases
3) Prove the universal approximation and separation capability of “generalized ” SLFNs.
4) Prove the consistency among ridge regression, system stability, neural network 

generation theory, maximal margin, and optimization constraints on network 
parameters in ELM framework

5) Prove that hidden node parameters can be independent of training data
6) Prove that random hidden neurons are linearly independent
-:
1) Use standard SLFNs instead of RVFL and QuickNet
2) Remove bias in the output nodes

Rosenblatt
Perceptron

(1958)

SVM
(1995)

ELM is efficient in:
1) Regression
2) Classification
3) Clustering
4) Feature learning

Before ELM theory, for these feature space 
methods:
1) Universal approximation capability may 

not have been proved.
2) Relationship with neural networks is not 

very clear.

ELM aims to address the open problems:
1) Can learning be made without tuning hidden 

neurons (including biological neurons) even 
when the shapes and modeling of their output 
functions are unknown?

2) Do there exist unified frameworks for 
feedforward neural networks and feature 
space methods?

Biological
learning

+:
1) Random neurons (even with 

unknown shapes / modeling)
2) Kernels
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Fig. 4 Difference and relationship between ELM and other related

techniques: ‘‘?’’ and ‘‘-’’ mean ‘‘Add’’ some new elements and

‘‘Remove’’ some existing elements, respectively. Basic ELM could be

considered as a nonlinear extensions of random projection ([72] and

[18]) and the principal component analysis (PCA) [73]. ELMs fill the

gap among artificial learning methods and biological learning

mechanism
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neural network generalization performance theory, linear

system stability theory and ridge regression theory are also

valid in regression and multi-class classifications, the same

ELM solutions can be used in regression, binary and multi-

class classification applications. SVM and LS-SVM face

difficulty in handling regression and multi-class classifica-

tions as the maximal margin concept may only be valid and

‘‘visible’’ directly in binary classifications. The maximal

margin concept used in SVM may also be valid only if kwk2
2

is considered; however, r1, r2, p and q in ELM optimization

formula (20) could have different combinations due to the

requirements raised in different applications. In addition to

the maximum margin concept used in SVM, another reason

why kwk2
2 is adopted in SVM is that /ðxÞ is unknown and

only kernels Kðu; vÞ ¼ /ðuÞ � /ðvÞ can be used in its dual

optimization problems which require kwk2
2 in order to gen-

erate kernels properly (cf. (3a) and (9a)).

Multi-class Cases

Maximal separating margin concept can be ‘‘visible’’ in

binary classification only. It is difficult to directly apply the

maximal separating margin concept in multi-class classifi-

cation and regression applications. This may be the reason

why in most applications of SVM and LS-SVM, one has to

convert multi-classification applications and regression

applications to some type of binary classification problems,

and indirectly resolve them using the classical binary solu-

tions. Such conversion from multi-class classification

applications to binary classification applications could

actually result in distorting the original applications, the

larger the number of classes is, the more serious the distor-

tion becomes. For instance, given a 10-class classification

applications with 10 data in each class. The One-Against-All

(OAA) method often used in SVM and LS-SVM converts

this multi-class application into a binary classification in this

way: The ith SVM or LS-SVM is trained with 10 examples in

the ith class with positive labels and all the other 90 examples

from the remaining 9 classes with negative labels. In other

words, such conversion has made balanced multi-class

classifications become imbalanced binary classifications.

The application property and distribution have been chan-

ged. However, ELM does not face such conversion distortion

issue. Same ELM solutions can directly be used in regres-

sion, binary and multi-class classification applications

without reformulating applications.

Conclusions

Both BP algorithm and SVMs have been playing irre-

placeable roles in machine learning and computational

intelligence, especially in neural networks. Without the

work done by the pioneers like Werbos [22, 25], Rumelhart

et al. [23, 24] and others, research in the area of neural

networks may not have revived and spread quickly to the

whole world since 1980s, let alone the further extensive

interest in computational intelligence. Without the revolu-

tionary SVM work by Cortes and Vapnik [1], many pop-

ular applications may not have been so successful and

possibly many applications may not even have been

appearing. Research on machine learning and computa-

tional intelligence area may have been halted for 10 years

or more. From the scientific point of view, this paper

mainly summarizes the reasons why the original SVM may

not naturally lead to the optimal classification solutions in

contrast to the common understanding held by the research

community. Instead, SVM and its variants may perhaps

tend to achieve sub-optimal solutions, especially compared

with ELM when the same kernels are used.

Before ELM learning algorithms and theories were

proposed, the relationship among different learning meth-

ods was not clear (cf. Fig. 3). ELM aims to provide a

biologically inspired simple and efficient unified learning

framework which fills the gap between artificial learning

methods and biological learning mechanism (cf. Fig. 4).

Several empirical attempts on randomness-based learning

have been proposed in the literature since 1958 when Ro-

senblatt’s perceptron [36–39] was proposed. Out of all the

randomness attempts [24, 31, 36–42, 54], Rosenblatt’s

perceptron may be the first artificial learning machine in

the related area.8 Rosenblatt’s perceptron used a linear

threshold function in the hidden layers, and the weights

between input layers and the first hidden layer are ran-

domly generated with possible numbers {?1, -1, 0}. The

weights between the first hidden layer and the rest of the

hidden/output layers are obtained using reinforcement

learning. Unlike all those randomness attempts which use

algebraic sum of input weights and use sigmoid/threshold

activation functions, ELM can use wide variety of activa-

tion functions in hidden neurons as long as they are non-

linear piecewise continuous. Such activation function need

not be algebraic sum based. ELM theories do not care

about the exact activation function formula of biological

neurons which in fact human beings may not have a way to

know. The randomness of Rosenblatt’s perceptron focuses

on the random ‘‘wiring’’ between the input layer (sensory

layer) and the first hidden layer (associator layer) which

shows the connectivity of nodes in the input layer (ele-

ments in sensory layer) and nodes in the first hidden layer.

8 We thank Bernard Widrow for mentioning the potential links

between Rosenblatt’s perceptron and ELM in our personal

communications.
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The randomness of ELM focuses on the strength of weights

of the connections between different layers.

Unlike all those randomness attempts, as discussed in

this paper, ELM learning theory and algorithms naturally

unify the neural network generalization performance the-

ory, linear system stability theory, ridge regression theory

and maximal separating margin concept. On the other

hand, ELM theories and algorithms argue that random

hidden neurons may capture the essence of some brain

learning mechanism as well as the intuitive sense that the

efficiency of the brain learning need not rely on computing

power of neurons. This may somehow hint at possible

reasons why brain is more intelligent and effective than the

conventional artificial learning techniques-based comput-

ers. ELM could possibly help build some tangible link

between machine learning and biological learning in some

way.

ELM theories and corresponding learning algorithms

may have addressed John von Neumann’s concern [74, 75]

why ‘‘an imperfect neural network, containing many ran-

dom connections, can be made to perform reliably those

functions which might be represented by idealized wiring

diagrams’’ [36]. As shown in Theorems 3.1 and 3.2, and

verified by numerous applications of ELM [5, 32, 55, 76],

as long as the output functions of hidden neurons are

nonlinear piecewise continuous and even if their shapes

and modeling are unknown, (biological) neural networks

with random hidden neurons attain both universal

approximation and classification capabilities, and the

changes in finite number of hidden neurons and their

related connections do not affect the overall learning

capabilities of the networks with gigantic number of hidden

neurons. ELM may also be efficient in clustering [55, 77,

78], feature learning [14, 79, 80] and dimensionality

reduction.

To summarize in a nutshell, this paper provides an

insight into ELM as follows:

1. To clarify the relationship between ELM and other

related learning methods in neural networks (Quick-

Net, RVFL, etc.) and feature space methods (PCA,

random projection, SVM and its variants such as LS-

SVM).

2. To show that ELM provides a simple unified learning

mechanism (for feature learning, clustering, regression

and classification) in feedforward neural networks and

feature space methods.

3. To show the possible reasons on why ELM outper-

forms SVM and its variants with higher learning

accuracy in many applications.

4. To further build up the relationship between ELM and

the biological learning mechanism.
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