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Abstract

Recently, a new learning algorithm for the feedforward neural network named the extreme
learning machine (ELM) which can give better performance than traditional tuning-based
learning methods for feedforward neural networks in terms of generalization and learning
speed has been proposed by Huang et al. In this paper, we first extend the ELM algorithm
from the real domain to the complex domain, and then apply the fully complex extreme
learning machine (C-ELM) for nonlinear channel equalization applications. The simulation
results show that the ELM equalizer significantly outperforms other neural network equalizers
such as the complex minimal resource allocation network (CMRAN), complex radial basis
function (CRBF) network and complex backpropagation (CBP) equalizers. C-ELM achieves
much lower symbol error rate (SER) and has faster learning speed.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In high-speed digital communication systems, equalizers are used very often at
receivers to recover the original symbols from the received signals. Real-valued
neural network models such as feedforward neural networks, radial basis function
(RBF) networks and recurrent neural networks have been successfully used for
solving equalization problems as neural networks are well suited for nonlinear
classification problems [3]. Complex-valued neural networks have attracted
considerable attention in channel equalization applications in the past decade.
Cha and Kassam [1] have proposed a complex-valued radial basis function (CRBF)
network which adopts the stochastic gradient learning algorithm to adjust
parameters. Compared with previously existing equalizers, the CRBF equalizer is
superior in terms of symbol error rate (SER). Jianping et al. [8] have developed a
complex-valued minimal resource allocation network (CMRAN) equalizer. Apply-
ing the growing and pruning criteria, the CMRAN equalizer realizes a more compact
structure and obtains better performance than CRBF and many other equalizers.
However, it should be noted that although the inputs and centers of CRBF and
CMRAN are complex-valued, the basic functions still remain real valued. In fact, as
pointed out by Kim and Adali [10], split-complex activation (basis) functions
consisting of two real-valued activation functions, one processing the real part and
the other processing the imaginary part, have been traditionally employed in these
complex-valued neural networks. Kim and Adali [10,9] have proposed an important
complex neural network model-a fully complex multilayer perceptron (MLP), which
uses a true complex-valued activation function. It has been rigorously proved [10]
that with a very mild condition on the complex activation functions the fully
complex MLPs can universally approximate any continuous complex mappings. The
corresponding fully complex backpropagation (CBP) learning algorithm with fully
complex activation function has also been successfully used in communication
applications [9].

Recently, a new learning algorithm for single-hidden-layer feedforward neural
network (SLFN) named the extreme learning machine (ELM) has been proposed by
Huang et al. [6,7]. Unlike traditional approaches (such as BP algorithms) which may
face difficulties in manually tuning control parameters (learning rate, learning
epochs, etc) and/or local minima, ELM avoids such issues and reaches good
solutions analytically. The learning speed of ELM is extremely fast compared to
other traditional methods. In this paper, we first extend the ELM algorithm from the
real domain to the complex domain where the fully complex activation functions
introduced by Kim and Adali [10] are used. Similar to ELM, the input weights
(linking the input layer to the hidden layer) and hidden layer biases of C-ELM are
randomly chosen based on some continuous distribution probablity (such as
uniform distribution probability used in our simulations) and the output weights
(linking the hidden layer to the output layer) are then analytically calculated. The C-
ELM is used for equalization of a complex nonlinear channel with QAM signals.
The simulation results show that the C-ELM equalizer is superior to CRBF [1],
CMRAN [8] and CBP [9] equalizers in terms of symbol error rate (SER) and learning
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speed. C-ELM also avoids local minima and all the difficulties in other schemes such
as tuning control parameters (learning rate, learning epochs, etc.).

This paper is organized as follows. Section 2 presents the C-ELM algorithm.
Section 3 shows the performance comparison of C-ELM with the CRBF, CMRAN
and CBP equalizers for a QAM channel equalization problem. Discussions and
conclusions are given in Section 4.

2. Complex extreme learning machine (C-ELM) algorithm

Given a series of complex-valued training samples (z;,y,), i = 1,2,..., N, where
z; € C" and y; € C", the actual outputs of the single-hidden-layer feedforward
network (SLFN) with complex activation function g (z) for these N training data is
given by

N
Zﬁkgc(wk'li+bk)=0i, i=1,...,N, (1)
k=1

where column vector w; € C" is the complex input weight vector connecting the
input layer neurons to the kth hidden neuron, B, = [Bi1»Bras---»Biml” € C” the
complex output weight vector connecting the kth hidden neuron and the output
neurons, and by € C is the complex bias of the kth hidden neuron. wy, - z; denotes the
inner product of column vectors w; and z;. g, is a fully complex activation function.

The above N equations can be written compactly as
Hf =0 ()

and in practical applications the number N of the hidden neurons is usually much
less than the number N of training samples and H#Y, where

H(wi,...,wg,21,...,Z5,bi,...,by)
geWi-z1+b1) - g(Wg-z1+bg)
gc(wl CIN +bl) v gc(w]V Y +bN) Nl
i of vl
B=1|: , O=1]": and Y= : . 4)
T T T
ﬁN Nxm ON Nxm yN Nxm

The complex matrix H is called the hidden layer output matrix. Using the analysis
similar to that of ELM [6,7] and using the proof given in ([13] p.252 and [2] Theorem
2.1) we can easily show that the input weights w; and hidden layer biases b; of the
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SLFNs with complex activation functions (which are infinitely differentiable) can be
randomly chosen and fixed based on some continuous distribution probablity
instead of being trivially tuned.! As analyzed by Huang et al [6,7] for fixed input
weights w; and hidden layer biases b;, we can get the least-squares solution f of the
linear system HfS = Y with minimum norm of output weights 5, which usually tend to
have good generalization performance. (Refer to Huang et al. [4-7] for detailed
analysis.) .
The resulting f is given by

B=H'Y (5)

where complex matrix H' is the Moore—Penrose generalized inverse (pp. 163-169 of
[11]) of complex matrix H. Thus, ELM can be extended from the real domain to a
fully complex domain in a straightforward manner. The three steps in the fully
complex ELM (C-ELM) algorithm can be summarized as follows:

Algorithm C-ELM: Given a training set 8 = {(z;,y,)|z; € C",y; € c",i=1,...,N},
complex activation function ¢.(z), and hidden neuron number N;

step 1: Randomly choose the complex input weight w; and the complex bias by,
k=1,...,N.

step 2: Calculate the complex hidden layer output matrix H.

step 3: Calculate the complex output weight f using formula (5).

Many fully complex activation functions proposed by Kim and Adali [10]
can be used in our C-ELM. These include circular functions (tan(z) = (¢”"—
e~ ) J(i(e” + e7F)), sin(z) = (e — e7¥)/2i), inverse circular functions (arctan(z)
= [ dt/(1 + ), arcsin(z) = [; dt/((1 — )'/?), arccos(z) = [; d¢/ ((1 —2)"/%)), hy-
perbolic functions (tanh(z) = (¢ — e ?)/(¢* + ¢77), sinh(z) = (¢ — e 7)/(2)) and
inverse hyperbolic functions (arctanh(z) = [; d¢/(1 — %), arcsinh(z) = [; dz/
((1 + 2)'/?)), where z € C.

Remark. Calculation of Moore-Penrose Generalized Inverse

Definition 2.1 (pp. 163-169 of [11]). A matrix G is the Moore—Penrose generalized
inverse of (real or complex) matrix A, if AGA=A, GAG =G, (AG)" = AG,
(GA)" = GA.

There are several methods to calculate the Moore—Penrose generalized inverse of
(real or complex) matrix. These methods may include but are not limited to
orthogonal projection, orthogonalization method, iterative method, and singular
value decomposition (SVD) [11,12]. The orthogonalization and iterative methods
have their limitations since searching and iteration are used, which we wish to avoid
in ELM. The orthogonal project method can be used when H*H is nonsingular and
H' = (H*H) 'H*. However, H*H may not always be nonsingular or may tend to be

The theoretical analysis such as universal approximation capability of C-ELM is currently under
investigation and will appear in a future paper.
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singular in some applications and thus orthogonal projection method may not
perform well in all applications. The singular value decomposition (SVD) can be
generally used to calculate the Moore—Penrose generalized inverse of H in all cases.

3. Performance evaluation

In this section, a well-known complex nonminimum-phase channel model introduced
by Cha and Kassam [1] is used to evaluate the C-ELM equalizer performance. This
equalization model is of order 3 with nonlinear distortion for 4-QAM signaling. The
channel output z, (which is also the input of the equalizer) is given by

Zp = 0, + 0.10% 4 0.0507 + vy, v,~.47(0,0.01)
0, = (0.34 — i0.27)s, + (0.87 + i0.43)s,_1 + (0.34 — i0.21)s,,_2 (6)

where ./7(0,0.01) means the white Gaussian noise (of the nonminimum-phase channel)
with mean 0 and variance 0.01.

The equalizer input dimension is chosen as 3. As usually done in equalization
problems, a decision delay 7 is introduced in the equalizer so that at time n the
equalizer estimates the input symbol s,_, rather than s, and we set 1 = 1. 4-QAM
symbol sequence s, is passed through the channel and the real and imaginary parts of
the symbol are valued from the set {£0.7}. The fully complex activation functions of
both C-ELM and CBP are chosen as arcsinh(z) = [; d¢/[(1 +/*)"/?], where
z=w-z+b. In fact, during our studies we find that CBP with the hyperbolic
activation function tanh(z) does not converge well and produce oscillation in the
error but CBP with the activation function arcsinh(z) converges; however, C-ELM
works well with both these complex activation functions and many others. The reason
may be that CBP gets stuck in local minima easily while ELM tends to reach global
minimum directly. Both the input weight vectors wy and biases by of the C-ELM? are
randomly chosen from a complex area centered at the origin with the radius set as 0.1.

All the three equalizers CMRAN, CBP and C-ELM are trained with 1000 data
symbols at 16 dB SNR. It is found that the CRBF equalizer trained with such a small
number of training data cannot classify the testing symbols clearly and thus a higher
number (10*) of training data are used to train CRBF equalizer. The hidden neuron
numbers of C-ELM and CBP are set to 10. The CMRAN equalizer obtains 22
hidden neurons at the end of the training process after self-growing and pruning
neurons during training. Different numbers of hidden neurons have been tried for
the CRBF equalizer; however, the optimal hidden neuron number of CRBF
equalizer is found to be 30.

All the simulations are conducted in a MATLAB environment running in an
ordinary PC with 3 GHZ CPU. Fig. 1 shows the distribution of the input data of the
different equalizers and Fig. 2 shows the eye diagram of the outputs of the four neural
equalizers, C-ELM, CBP, CMRAN and CRBF, respectively. As observed from Fig. 2

20pen source codes of the ELM algorithm with different testing cases can be downloaded from: http://
www.ntu.edu.sg/eee/icis/cv/egbhuang.htm.
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Fig. 1. The distribution of the input data z, of equalizers.
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Table 1

Time comparisons of the four equalizers (a) C-ELM, (b) CBP, (c) CMRAN, (d) CRBF

Algorithms Neurons Number of training data Training time (s) Speedup
C-ELM 10 1000 0.032 1
CBP 10 1000 1.266 39.56
CMRAN 22 1000 25.481 796.28
CRBF 30 10* 46.331 1447.84

both C-ELM and CBP can separate the outputs into four regions clearly. Average of
10° testing samples at various SNRs were used for computing the SER and the
comparison of SER for all the four equalizers is shown in Fig. 3. As observed from
Fig. 3, C-ELM is superior to all other equalizers in terms of SER. Table 1 shows the
training and testing time comparison for the four equalizers. It can be seen that the C-

ELM equalizer can complete training much faster than all other equalizers.

4. Discussions and conclusions

In this paper, we propose a fully complex learning algorithm for single hidden-
layer feedforward neural networks (SLFNs) which is referred to as fully complex
extreme learning machine (C-ELM) and its performance has been tested in
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communication channel equalizers. Similar to ELM [6,7], the input weights (linking
the input layer to the hidden layer) and hidden layer biases of C-ELM are randomly
generated and then the output weights (linking the hidden layer to the output layer)
are simply analytically calculated instead of being iteratively tuned. As observed
from the simulation results, the proposed C-ELM can complete the learning phase in
an extremely fast speed and obtain much lower symbol error rate (SER). Consistent
to the conclusion of Kim and Adali [10] compared to split-complex activation (basis)
functions based on neural models (CMRAN and CRBF) the fully complex models
(C-ELM and CBP) provide parsimonious structures for applications in the complex
domain. It should be noted that as analyzed by Kim and Adali [10], the CBP learning
algorithm is sensitive to the size of the learning rate and the radius of initial random
weights® and as done in our simulations the learning rate and the radius of initial
random weights need to be carefully tuned. Different from other equalizers, C-ELM
has avoided well the difficulties in manually tuning control parameters (learning rate,
initial weights/biases, learning epochs) and prevented local minima by reaching the
good solutions analytically. C-ELM can be implemented and used easily. In fact,
faster learning speed, faster response and ease of implementation are key to the
success of the communication channel equalizers. In principle, as tested in our
various simulations, many fully complex activation functions introduced by Kim
and Adali [10] can be used in the proposed C-ELM and its universal approximation
capability will be provided in detail in the near future.
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